Schedul i ng Worki ng G oup J. M Schopf
Schedul i ng Request for Coments: 8.5 Nort hwestern University
Cat egory: I nfornational July 2001

Ten Acti ons Wien Super Schedul i ng
Status of this Draft

This draft provides information for the grid scheduling community. Distribution
of this menmo is unlinited.

Copyright Notice
Copyright (c) The Gid Forum (2001). All rights reserved.
Abst r act

Thi s docunent has three purposes. The first is to outline how a user currently
approaches the problem of scheduling across nmultiple administrative domains.

Pl ease note that while these are grouped and nunbered they do not in any way
refer to an ordering. The second purpose of this docunment is to show where a
smal | amount of effort could nake a | arge anount of change and neke |ife easier
for the application scientist. The third is to annotate where work related to
this is being performed, and what state it is currently in.

1. Introduction

Super Schedul i ng has been defined as the process of scheduling resources where
that decision involves using nultiple admnistrative domains. Severa
different scenarios fall under this domain: searching nultiple adm nistrative
donmai ns to use a single machine; speculatively subnmitting a job to single
machi nes at nultiple sites where all but one of the submi ssions is canceled at
a later tine; scheduling a single job to use multiple resources at a single or
multiple site.

We leave the definitions of “job” and “‘resource” purposely vague at this time
to avoid religious arguments. A job can be anything that needs a resource —
from a bandwidth request, to an application, to a set of applications (for
example, a parameter sweep). A resource is anything that can be scheduled, a
machine, disk space, some QoS network, a person, etc.

We use the word ‘““step” and a numbering system for easy reference. This does
not imply that these actions are actually performed in this order, or that the
all MUST occur in every system that is modeled after this approach. In general,
don’t pay too much attention to the numbering, this is just one possible
ordering. Some of the steps may be iteractive, recursive, repeated, or just
plain ignored.

One of the primary differences between a superschedul er and ot her common
schedul ers is that the superschedul er does not own the resources and therefore
does not have total control over them Furthernore, the superschedul er does
not have control over the entire set of jobs on the system or even necessarily
know about them so decisions about an entire set of jobs to a resource cannot
be made. This |ack of ownership and control are the sources of many of the
problens to be solved in this area.

The nmost conmon current superscheduler is the user. There are however severa
efforts underway to change this [NAB99, Silver, PBS, Loadleveler, LSF]. This
docunment wal ks through the steps that a user currently (June 2000-July 2001)
goes through when scheduling a job over resources on nultiple adm nistrative
domains. In Section 3 exanples of some of these steps are given with respect
to specific systeminpl enentations.

Schopf I nf or mati onal [Page 1]

SchedWD 8.5 Ten Actions Wen Super Schedul i ng July 2001

2. Stages of Super Scheduling

A user goes through three stages to schedule a job when it involves nultiple
sites. Phase one is resource discovery, in which the user nakes a |ist of
potential resources to use. Phase two involves gathering information about
t hose resources and choosing a best set to use. In phase three the user then
runs the job.

Exanpl es of current approaches to aid users in these steps are given in Section
3.

Phase 1: Resource D scovery

Resource di scovery involves the user selecting a set of resources to
investigate in nore detail in phase two, information gathering. At the

begi nning of this phase, the potential set of resources is the enpty set, and
at the end of this phase, the potential set of resources is sone set that has
passed a mininal feasibility requirenent. Mst users do this in three steps:
aut hori zation filtering, job requirement know edge, and filtering to neet the
m ni mal job requirenents.

Step 1 Authorization Filtering

I't is generally assumed that a user will know which resources he or she has
access to in ternms of basic services.

At the end of this step the user will have a list of nachines or resources to
whi ch he or she has access.

Step 2 Application requirenent definition

In order to proceed in resource discovery, the user nust be able to specify
some mninal set of job requirenents in order to further filter the set of
feasi bl e resources (see Step 3).

The set of possible job requirenments can be very broad, and vary significantly
between jobs. It may include static details, such as the operating system or
hardware for which a binary of the code is available, or that the code is best
suited to a specific architecture. Dynanic details are also possible, for
exanpl e a m ni num RAM requi renment, connectivity needed, /tnp space needed, etc.
This may include any information about the job that should be specified to make
sure that the job can be matched to a set of resources.

Step 3 Mninmal requirenent filtering

G ven a set of resources to which a user has access and the mnimal set of

requi renents the job has, the third step in the resource discovery phase is to
filter out the resources that do not neet the mninmal job requirenents. The
user generally does this step by going through the list of resources and
elimnating the ones that do not neet the job requirements as much as they’re
known. It could also be combined with the gathering of more detailed
information about each resource (step 4) (and in fact this is how most proposed
systems go about the process). However, when being done by hand, if a user can
eliminate an inappropriate resource it is done at this stage to simplify the
information gathering in the next phase.

Phase 2 System Sel ecti on

Given a group of possible resources (or a group of possible resource sets), all
of which meet the minimum requirements for the job, a single resource (or

Schopf I nf or mati onal [Page 2]

SchedWD 8.5 Ten Actions Wen Super Schedul i ng July 2001

singl e resource set) nmust be selected on which to schedule the job. This is
generally done in tw steps: gathering information and maki ng a deci sion

Step 4 Gathering information (query)

In order to make the best possible job/resource match, a user needs to gather
dynam c i nformati on about the resources in question. Depending on the
application and resource in question, different information nmay be needed.

Take for instance the sinple case of finding the best single resource for a job
to run on. A user might want to know the | oad on the various machines, or the
queue lengths if the machi ne has queues. In addition, physical characteristics
and software requirenments play a role — is the compiler you need on the
machine, is the disk big enough for the data, etc. Then there are
location/connectivity issues — is the machine close enough to the data store?

All of these issues are multiplied in the case of multiple resources.
Making an advance reservation (see Step 6) may or may not be a part of this
step.

Step 5 Select the system(s) to run on

Given the information gathered by the previous step, a decision of which
resource (or set of resources) should the user submit a job is made in the
step. This can and will be done in a a variety of ways.

Note that this does not address the situation of speculative execution — when a
job is submitted to multiple resources, and when one begins to run the other
submissions are cancelled. This is only the selection of a resource (or set of
resources).

Phase 3 Run job

The third phase of superscheduling is running a job. This involves a number of
steps, few of which have been defined in a uniform way between resources. They
include:

Step 6 (optional) Make an advance reservation

It may be the case that to make the best use of a given system, part or all of
the resources will have to be reserved in advance. Depending on the resource,
this can be easy or hard to do, may be done with mechanical means as opposed to
human means, and the reservations may or may not expire with or without cost.

Step 7 Submit job to resources

Once resources are chosen the application must be submitted to the resources.
This may be as easy as running a single command or as complicated as running a
series of scripts, and may or may not include setup or staging (see Step 8).

Step 8 Preparation Tasks

The Preparation stage may involve setup, staging, claiming a resveration, or
other actions needed to prepare the resource to run the application. One of
the first attempts at writing a scheduler to run over multiple machines at NASA
was considered unsuccessful because it did not address the need to stage files
automatically, for example.

Step 9 Monitor progress (maybe go back to 4)

Schopf I nf or mat i onal [Page 3]

SchedWD 8.5 Ten Actions Wen Super Schedul i ng July 2001

Dependi ng on the application and its running time, users may nonitor the
progress of their application and possi bly change their mind about where or how
it is executing.

Step 10 Find out J is done

Wien the job is finished, the user needs to be notified.

Step 11 Conpletion tasks

After a job is run, the user may need to retrieve files fromthat resource in
order to do data analysis on the results, break down the environnent, renove
tenporary settings, etc.

3. Exanpl es

Several parts of the process described in Section 3 have begun to be addressed
by current systems. 1In this section we address this work.

Phase 1: Resource Di scovery

Step 1 Authorization Filtering

The current conmon solution to knowi ng where one is for the user to have a |ist
of user nanes, nachi ne names, and passwords. Wiile this is a security risk if
sonmeone else finds the list, that access can be controlled by the user in nost
cases (by, for exanmple, locking it in the top drawer of a desk). While the
information is generally avail abl e when needed, this nethod is known for
problens with fault tolerance.

There has been sone di scussion on howthis could be done autonmatically. One
way to acconplish this is with a PKI infrastructure with single-sign on to
simplify the pre-requisite authentication. Note that this is not neceesarily
true for the authorization. The authorization issue by itself is quite

i mportant, and is not addressed here.

Alternatively, this information could be kept as part of a central information
service with other systeminformation [FFK+97]. This approach is currently
bei ng used by the KB schedul er from Poznan [Nab99], but has scalability

pr obl ens.

Another solution is the use of “Smart Cards”, which are credit card-like
devices that hold account information for a user on them. However, this assumes
that a central agency has agreed on how to issue smart cards between
administrative domains, and the smart card readers have been installed wherever
access is needed.

Step 2 Application requirement definition

Currently, while the need for this information is recognized, for example with
AppLeS [Apples, BW96, BWF+96], the Network Weather Service [Nws,WSH99], Condor
ClassAds [RLSO00, RLS98] etc., it is generally assumed in most system work that
the information is simply available. Very little work has been done to
automatically gather this data, or to store it for future use. This is iIn part
because the information may be hard to discover.

Attempts to have users supply this information on the fly has generally
resulted in data that has dubious accuracy - for example, notice how almost
every parallel scheduler requires an expected execution time, but almost every
system administration working with these schedulers compensates for the error
in the data, by as much as 50% in some [ASW99]. Attempts to gather the
information, for example by using forms, has been found to be extremely time
consuming as well [GFUWG99].

Schopf I nf or mati onal [Page 4]

SchedWD 8.5 Ten Actions Wen Super Schedul i ng July 2001

In the future, one can envision conpilers that could aid in supplying basic
requi renents for applications, or nonitoring.

Step 3 Mnimal requirenent filtering

A resource description language (Condor’s ClassAds[Condor, RLSO0, RLS98],
Globus” RSL[CFK+98, FFK+97], etc.) in combination with some Grid Information
Service (GIS) could be used to perform this filtering, but has not yet to our
knowledge.

Phase 2 System Sel ecti on

Step 4 Gathering information (query)

Ideally, a user (or scheduling service) would ask “If I give this job to a
resource (or set of resources), how long will it take to run?” Howeverm this is
an unsolved question. Instead, one area that is low-hanging fruit would be to
have an interface for each scheduler/resource management system to query “If 1
give you a job that looks like XX, when will it start?” [SC00].

This doesn’t answer the real question a user would like to ask, namely, when
will the job END, but it approximates it. There is a large body of predictive
work, but most of it requires additional information not available on current
systems.

There are various interfaces to data sources to help aid users collect some of
this information by hand. Most recent in these is the Globus/NCSA Grid
Searcher Project [Gridsearcher] which gives a user-friendly front-end to the
Globus MDS information service. Similarly, the Alliance User Portal [AUP] and
tﬂe Npaci Hotpage [hotpage] gather together some of the needed information for
the user.

Step 5 Select the system(s) to run on

One system that could be extended to address some of this is the Condor
Matchmaker/classad system [Condor, RLS00, RLS98], which matches resources to
jJobs based on user defined ranking equations

Phase 3 Run job

Step 6 (optional) Make an advance reservation

A current example of making an advance reservation involves a user calling a
system admin to reserve time on a large machine for demo purposes.

Several projects have concentrated on advance reservations [Legion, Silver,

PBS]. Additional work has been done by Roy [GARA, FRSO0] in reserving
resources other than machines or networks.

Step 7 Submit job to resources

A typical example of a user doing this is running the gsub. For example:
qsub -1 ncpus=4,walltime=2:00:00 MyJob

Step 8 Preparation tasks

Currently, a user will run scp or ftp to assure that the data files needed are
in place.

Schopf I nf or mat i onal [Page 5]

SchedWD 8.5 Ten Actions Wen Super Schedul i ng July 2001

Several groups have begun to address this problem one being dobus with their
Hi gh Throughput Broker (htb) [CFK+98]. HTB had scripts set up to subnmit a set
of directories to each needed nmachi ne and do the pre-staging for the user
automatically. Currently in d obus, GASS [GASS] provi des stagi ng

Condor [Condor] al so supports a variation of this where it actually runs an
extra process before and after the application is run to do staging and cl ean-

up.
Uni core [Unicore] can al so support autonated pre-staging.

Step 9 Monitor progress (maybe go back to 4)

Today, this is typically done by repetitively querying the resource for status
i nformation

Step 10 Find out J is done

Oten, submssion scripts for parallel machines will include an enai
notificati on paraneter

Step 11 Conpletion tasks

Currently, this is done nost often by hand by the user using scp or ftp.
Many of the current systens that do staging (Step 8) als o handl e cl eanup

4. Concl usi on

Thi s docunent defines the steps a user follows to nake a scheduling decision
across nultiple administrative domains at the present tine.
W al so review current approaches in these areas.

5. References

[Appl es] Application Level Scheduling (AppLeS), http://apples. ucsd. edu/
[ASVW@9] Al liance Scheduling Workshop, U UC, February, 1999.

[AUP] Aliance User Portal (AUP), http://aup.ncsa. uiuc.edu/

[Condor] Condor, http://ww. cs.w sc. edu/ condor/publications. htm

[BW96] Fran Berman and Rich Wolski, ““Scheduling from the Perspective of the
Application”, Proceedings of the Symposium on High Performance Distributed
Computing, 1996 (also available at http://apples.ucsd.edu/pubs/hpdc96.ps).

[BWF+96] Fran Berman, Richard Wolski, Silvia Figueira, Jennifer Schopf, and
Gary Shao, “Application-Level Scheduling on Distributed Heterogeneous
Networks”, Proceedings of Supercomputing 1996 (also available at
http://apples.ucsd.edu/pubs/sup96.ps and UCSD CS Tech Report #CS96-482) .

[CFK+98] K. Czajkowski, 1. Foster, N. Karonis, C. Kesselman, S. Martin, W.
Smith, and S. Tuecke, “Resource Management Architecture for Metacomputing
Systems”, Proc. IPPS/SPDP "98 Workshop on Job Scheduling Strategies for
Parallel Processing, 1998 (also available at
ftp://ftp.globus.org/pub/globus/papers/gram97.ps)

[FFK+97] S. Fitzgerald, 1. Foster, C. Kesselman, G. von Laszewski, W. Smith,
S. Tuecke, “A Directory Service for Configuring High-Performance Distributed
Computations” Proc. 6th IEEE Symp. on High-Performance Distributed Computing,
pg. 365-375, 1997 (also available at

Schopf I nf or mat i onal [Page 6]

SchedWD 8.5 Ten Actions Wen Super Schedul i ng July 2001

http://ftp.globus. org/ pub/ gl obus/ paper s/ hpdc-97- nds. pdf).

[FRSO0] I. Foster, A. Roy, V. Sander, “A Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation, (8th International
Workshop on Quality of Service, 2000) (also available at
http://www._globus.org/documentation/incoming/iwgqos_adaptl.pdf)

[GARA] Globus Advance Reservation Architecture, http://www-
fp.mcs.anl .gov/qos/papers/gara_admin_guide.pdf

[GASS] Global Access to Secondary Storage (GASS), http://www.globus.org/gass/
[GFUWG99] Grid Forum Users Working Group, www.gridforum.org, 2000.
[Gridsearcher] Sean Melody and Jennifer Schopf, http://anchor.cs.nwu.edu
[Hotpage] Hotpage, https://hotpage.npaci.edu/

[Nab99] Jarek Nabrzyski, Knowledge-based Scheduling Method for Globus, Globus
Retreat, Redondo Beach, 1999, http://www.man.poznan.pl/metacomputing/ai-
meta/globusnew/index.html

[Legion] Legion, http://legion.virginia.edu/
[LSF] LSF, http://www.platform.com/products/LSF/

[Loadleveler] Loadleveler, http://www-
1.ibm.com/servers/eserver/pseries/software/sp/loadleveler_html

[NWS] The Network Weather Serrvice, http://nws.npaci.edu/NWS/
[PBS] Portal Batch System (PBS), http://pbspro.com

[RLSOO] Rajesh Raman, Miron Livny, and Marvin Solomon, "Resource Management
through Multilateral Matchmaking'™, Proceedings of the Ninth IEEE Symposium on
High Performance Distributed Computing (HPDC9), Pittsburgh, Pennsylvania,
August 2000, pp 290-291. (also available at
http://www.cs.wisc.edu/condor/doc/gangmatching.ps)

[RLS98] Rajesh Raman, Miron Livny, and Marvin Solomon, Matchmaking: Distributed
Resource Management for High Throughput Computing", Proceedings of the Seventh
IEEE International Symposium on High Performance Distributed Computing, July
28-31, 1998, Chicago, IL(also available at
http://www.cs.wisc.edu/condor/doc/hpdc8.ps)

[SCO0] Snell and Clement, '"Metascheduling Query and Reservation Interface",
Global Grid Forum Schedule working Group WD 2.2, April 2000,
http://www.cs.nwu.edu/~jms/sched-wg/WD/schedwd2.2.pdf

[Silver] Silver, http://www.supercluster.org/projects/silver/
[Unicore] Unicore, http://www.unicore.de/

[WSH99] Rich Wolski, Neil T. Spring, and Jim Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting Service for
Metacomputing”, Journal of Future Generation Computing Systems, 1999, (also
available at http://www.cs.ucsd.du/users/rich/papers/nws-arch.ps.gz or as UCSD
Technical Report Number TR-CS98-599, September, 1998)

6. Author’s Addresses

Jenni fer M Schopf

Schopf I nf or mat i onal [Page 7]

SchedWD 8.5 Ten Actions Wen Super Schedul i ng July 2001

Conput er Sci ence Depart nent
Nort hwestern University
1890 Mapl e Ave.

Evanston, IL 60201

Tel : (847)491-7320

Fax: (847)491-5258
jms@s. nwu. edu

Schopf I nf or mat i onal [Page 8]

